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ERRATA

Page 5. Fourth equation: Change 2 and P2 to u, and pz.

Page 28. Third equation from the bottom: Insert an integral sign f in
front of j dv.

Page 29. A - Replace the statement: "which may be rewritten as..." with
"subject to

(1 + )E = E = D

which may be rewritten as

(1 - ')D = E"

B - Third equation from the bottom: The subscript of ,1 in the
last exponent is L rather than H.

Page 32. Top line should read:

Z f 1H - DHei~oti2Hr

Page 39. Fourth equation: The first term on the right should read

"'- 2 "
XO XB'

Page 45: Last equation: Replace "sinh2 0 = ... " with "2 sinh2 0

Page 54. Last equation: Correct the term "1 -I" to 1 -

Page 55. A - Top equation: Correct the last term to 1 y

B - Second equation: The upper limit of the first integral on
the right is -1 rather than -.

Page 60. Last part of last equation should read g to

Page 61. Second equation should read

sinh2 x = (ex - e-x)2 e2 x + e-2x - 2
4 4
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PREFACE

One aim of the X-Ray Optics Branch during the past years has been an
understanding of the diffraction properties of crystals and their characteriza-
tion on the basis of defect structure. For this purpose, my coworkers and I
have carried out both experimental and theoretical investigations in diffrac-
tion and have compared our results with the mathematical and physical
models that have been available in the works of various authors.

A reference we have believed to be a source of many subtle ideas in the
diffraction field is Zachariasen's 1945 book, Theory of X-Ray Diffraction in
Crystals. However, Zachariasen's presentation of the mathematical informa-
tion is in general too brief. Thus, in contrast to his verbal description of the
physical process, which is often quite lucid, many of his significant derivations
have a striking absence of intermediate steps. Although no reader would like
to see all the detail, we believe that the more difficult steps should be accom-
panied by at least a few comments that would indicate the point at which
underlying mathematical approximations have been introduced.

The present set of notes on Chapter III ("Theory of X-Ray Diffraction
in Ideal Crystals") of Zachariasen's book is intended to partially remove this
deficiency of explanatory comments. Initially, comments were written both
for Chapter III and that part of Chapter IV which precedes the section on
"Heat Motion." Prior to their introduction as an NRL Report, however, the
notes had to be modified somewhat. First, to make them useful to readers
with diverse levels of mathematical background, considerable effort was made
to give explanations and derivations of formulas in as elementary a fashion
as possible. (For example the notes begin with simple illustrations of the
periodic functions.) This has not always been practical, of course, and
several concepts will nevertheless remain difficult. The emphasis has been
on those numerous derivations which require special mathematical tools and
clever steps in reasoning and approximation.

Second, as a compromise in the amount of material presented, Chapter
III alone was prepared for this NRL Report. In fact, Chapter IV is much
easier to understand once the concepts of Chapter III are clarified. These
notes are only a supplement to the original chapter and are not an entity in
themselves; a completely rewritten chapter would probably have tripled the
size of this work.

With the publication of this report it is hoped that at least some of the
time taken by the serious student of diffraction theory would be better spent
in thinking about new solutions to old problems (such as the concept of
"mosaic block"), which at the same time realizing the economy and pro-
fundity of Zachariasen's thoughts, which have become an inseparable part
of his style throughout the years.

M. Fatemi
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ABSTRACT

W. H. Zachariasen's well-known 1945 book "Theory of X-Ray
Diffraction in Crystals" contains many significant and original
ideas pertaining to diffraction theory. However, the discussions and
mathematical derivations therein lack the necessary detail which could
make the text useful to readers of diverse mathematical background.
The purpose of these notes is to provide additional comments and
intermediate derivational steps for Chapter III of this book, "Theory
of X-Ray Diffraction in Ideal Crystals," whose content has often been
referenced in the published literature.

PROBLEM STATUS

This is an interim report on the NRL Problem.

AUTHORIZATION

NRL Problem P04-04

Manuscript submitted January 29, 1973
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EXPLANATORY NOTES ON W. H. ZACHARIASEN'S
"THEORY OF X-RAY DIFFRACTION IN IDEAL CRYSTALS"

INTRODUCTION

The study of x-ray diffraction in crystals ultimately leads to the measurement of a
few basic parameters which, in a general sense, reflect the quality of the crystals when
used in applied problems such as spectral analysis of radiation sources, analysis of com-
pounds, radiation damage, and growth and defect structure of materials. Among these
parameters are the following:

* The efficiency with which x rays of a particular energy (or wavelength) are dif-
fracted from a crystal.

* The sharpness of diffraction peaks, that is, the resolution with which reflections
from a crystal may be distinguished.

The instrument capable of such measurements is the double-crystal spectrometer.
Here characteristic x rays of wavelength X are reflected by the first crystal (monochrom-
ator) according to Bragg's law X = 2d sin 0, where d is the interplanar spacing of the dif-
fracting planes, and 0 is the Bragg angle. The reflected x rays then arrive onto the second
crystal, which is to be analyzed for its own perfection or to be used in the analysis of
radiation incident upon its surface.

To investigate the diffraction characteristics of a crystal in a double-crystal spectrom-
eter, the monochromator is fixed and the second crystal is rotated-or rocked-in the
vicinity of the Bragg angle. The response of the crystal to the incident x-ray photons,
shown by a plot of intensity versus angle, is called its rocking curve.

The peak of the rocking curve, which occurs at (or very near) the Bragg angle, is a
significant parameter. The ratio of the peak intensity to the incident intensity is a dimen-
sionless quantity called the peak diffraction efficiency. The angular width of the rocking
curve, which is a measure of the sharpness of diffraction, is influenced by several geomet-
rical factors (slit size, etc.) as well as by the perfection of both crystals. In scientific com-
munications either the full width at half maximum (FWHM) or the half breadth at half
maximum (HBHM) are quoted. The area under the rocking curve (which accounts for the
total number of photons diffracted) divided by the number of incident photons is known
as the integrated reflection coefficient (R value) and is expressed in units of radians.

Note: The title of this report refers to Chapter III of the book Theory of X-Ray Diffraction in Crystals, New
York, Wiley, 1945.

1
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The point of this introduction is to emphasize the ultimate purpose of all the deriva-
tions and explanations both here and in Zachariasen's book. These should be regarded as
a means toward an experimental end: in the final analysis, any diffraction theory should
be tested by a physical instrument, such as the double-crystal spectrometer. This is why
such a discussion appears at the end of Zachariasen's Chapter III.

Much can be learned from any theoretical exercise, but the final value of a good
theory is not only to explain experimental results but to do it on a physically sound basis
and with such vigor as to enable the experimenter to apply it in further predictions.

DERIVATIONS AND EXPLANATIONS

The derivations and explanations presented here will begin with the starting pages of
Chapter III and be keyed by subheadings to pages or equation numbers in the sequence
of appearance in the chapter.

Page 83: Concept of a Periodic Function

A typical one-dimensional periodic function is the sine function. If the periodicity
is shown by the vector a, an arbitrary periodic function may appear as in Fig. 1.

The vector a defines a specific orientation in space. Since any solid is three-dimen-
sional, it is in general necessary to specify three directions for any periodic lattice function.

Page 83: Wave Vector k or ko

The wave vector k or ko is defined differently by various authors. In quantum me-
chanics the more usual notation is ko = 2r/No, whereas others prefer k = 1/X without the
factor 2r.

q ( r) fN rN

r w

Fig. 1-An arbitrary periodic function T(r)

2
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Page 84 (and Chapter I)

A clear explanation of reciprocal lattice concepts, together with a discussion on the _
equivalence of Bragg's law and Laue diffraction conditions, is given by Azaroff [1].

Figure 3.2

Figure 3.2 is a diagram drawn in the reciprocal lattice space. In this space, linear
dimensions have units inverse to the "real" crystal lattice space. The "reality" of the
reciprocal space, however, becomes apparent upon studying the origins of the stereographic
projection.

Pages 87 and 88

Four general or three "practical" experimental methods are described. Today, how-
ever, the fourth method (continuous variation of X together with the direction of incidence)
has found a significant place in diffraction studies: The curved-crystal spectrometer de-
scribed by Birks [21 has been used as an invaluable tool in spectral analysis of pulsed
x-rays (flash x-ray tubes, laser-induced x rays, etc.).

Page 89

In sections 3 through 7 intensity expressions are derived on the basis of kinematical
theory, for the case of a single electron, a single atom (aggregate of electrons), a unit cell
(basic array of atoms), and a "small" crystallite. The dynamical theory is then treated in
sections 8 through 12.

Page 90: Basic Assumptions of Thomson Scattering

The first assumption of Thomson scattering is that the restoring force on the electron
is negligible. Therefore, the force due to the electric field, eE, is the net force and accel-
erates the electron according to Newton's second law. The second assumption is that the
natural frequency of the electron is small compared to the frequency of x rays. Thus no
resonance will occur between the electron and the electromagnetic field. This means that
the electron scattering intensity will be an expression independent of x-ray frequencies.
On the basis of these assumptions, equation 3.7 follows from the simple second-order dif-
ferential equation

-eEoeiWot = d2X

Equation 3.8 is a "definition" from elementary electricity and magnetism theory. Equa-
tion 3.9 also defines the coefficient of E0 in Equation 3.8.
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Page 90: Dipole Radiation, Equation 3.10

The following texts give more explicit forms for dipole radiation by writing out vari-
ous components: Becker and Sauter [3], Pugh and Pugh [4], and Panofsky and Phillips
(1962) [5]. The vectorial form given by equation 3.10 will be used in the following deri-
vation.

Derivation of Equation 3.11

The vector u is the unit vector in the direction of scattering (or observation), and
Pe is the electric dipole moment. The vector u X Pe appearing in equation 3.10 is a vec-
tor normal to u and P. Its magnitude is

IullPel sin L(u,pe) = UlIPelsinqs = IPelsin p,

and its direction is determined by the right-handed screw rule. Now

eiwOtEe = (u X Pe) X uei(°ti2rkR,

Ee = u X e) X ue R

= Eel 2 = Ee E* = (u X Pe) X u] [(u X Pe) X U].

Note that taking complex conjugate removes e 27rik R. Again,

[(u X e) X u] I u and I (u X Pe) * [(u X Pe) X ] Pe-

Now

l(u X Pe) X U = lu X Pellul sin L(u X Pe), U = lu X PeK IUI

because u I u X e and sin L[(u X Pe), u] = 1. Thus

J(U X e) X U12 = psin2 = E 2 sin

Since

le _ e
2 Io E 2 '00 D

then equation 3.11 follows.

Page 91: Derivation of Equation 3.12

The sentence introducing equation 3.12 states that-the equation is obvious. However,
even though equation 3.12 may be justified by visual observation, it is not at all obvious.

4
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Sin sp is defined in the relation

LUO X Pe = IUOIIPeI sin', = IPe sin ,

or

u X Pel

sinq~ I I

and

*n2 |U X PeILU X PeI (u X Pe)- (U X Pe)sm {p = =12 Pe 2

Now define , j, k as the set of unit vectors along the X, Y, Z directions. We have

u X p = (uyI+U 2 k) X (Pxi+P 2 k)

which becomes, since j X i = -k, j X k = i, k X i = j, and k X k = 0,

u X P = -UyPxk + uypzi + uzpj

with

Uy = ul cos 20 = cos 20, Uz = sin 20,

PX = IpI sin ,, P, = IPI Cos .

Then

2 ) = COS2 20 sin2 4 + COS2 20 COS2 4 + sin 2 20 sin 2 4

= COS2 20 + sin2 20 sin2 p

= 1 - sin2 20 + sin2 20 sin2 '

= 1 - sin2 20(1 -sin 2 4)

= 1 - sin 2 20 cos2 4,

Page 91: Scattering by an Atom

Under the assumption of a small restoring force and no interaction between electrons,
equation 3.13 should be corrected to
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e= 2o -i2irkor

Now define the dipole moment as

-exi = - EOe
0

pj e'S0

In other words p contains only the spatial part of the dipole. With this definition

e2 E0 i2 7ko rj
Pi = 2 Ee-i~k y

Equation 3.8 previously defined e as

e2
Pe= -E 0 2

m0

so that

p=pe-i27rko- rjpi= eeiv0j

This means, physically speaking, that the dipole moment of the jth electron in the atom
is equal to the dipole moment of Thomson electron weighted by a phase factor depending
on the spatial coordinates of the electron.

Equations 3.15 and 3.16

In equation 3.15, Eat, is the amplitude of the electric field observed at the point R.
However Rj appears in the exponent, because of the effective E at point R is the sum of vari-
ous electronic contributions of index (Fig. 2). The th contribution to the amplitude has
the form

2 2
P Xuj C 0e-i2TkRj = (uj X Pe xu ei 2 vrkoie i 2 rkRj

(U Xp) R e) X Uj c 2 R e °e

where we replaced k by k, although we did not substitute R for R (except in the denom-
inator of co0/c2Rj). Then the exponential part looks like

ei 2 7rko re-i2rk-(R-rj) e 2iTi(k-ko)-rjei2irk R

and the total sum goes over to

2
(Uj X e) X uje-i27rk R Co 0 e27ri(k-ko)-rj

i (ujX~e)Xuje c2R

6
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Fig. 2-Vectors from the nucleus of an atom and
its jth electron

Looking at the similarity between this and equation 3.10, we can write equation 3.16:

Eat. = Ee eiS ri, s - 27r(k - ko).

I

This means that the amplitude Eat, at the observation point R is the same as that of an
electron in an electric field, multiplied by a phase factor eiS i which is summed over all
electrons in the atom.

The "interference effects" referred to at the end of page 92 may be observed not
only for coherent beams from regular arrays, arising from crystal structure, but also from
instantaneously incoherent beams. The only difference is that in the former these effects
remain detectable through time but in the latter they disappear within a time comparable
to the inverse frequency of the interacting photons. We are here concerned with only
those effects that show up after time averaging, namely, structure-dependent, steady-state
effects.

Page 93: Classical Assumption of Independent Probabilities

The classical assumption of independent distribution functions aj obviously would not
hold in the quantum-mechanical treatment of the problem, because the Pauli exclusion
principle would impose an additional constraint on the electronic wave functions or asso-
ciated probabilities.

Page 93: Coherent Scattering

The incoherent scattering is obtained only after the coherent scattering and total
scattering are written down:

I(inc.) = (tot.) - I(coh.).

To obtain the coherent scattering, first the instantaneous amplitudes of equation 3.16 are
averaged, whereas to obtain the total scattering the instantaneous intensity expression is
averaged.

The mean amplitude in equation 3.17 is obtained by summing the amplitudes of vari-
ous electrons, each one of which contributes to the sum in the form of equation 3.18.
Note that averaging the quantity is the same as integrating the probability (aj) over the en-
tire volume. The phase factor els"i has to be included for each term.
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Equation 3.20

The second equality in equation 3.20 results from the fact that for i = j the value of
the double integral equals 1. There are Z terms in this integral (for the Z electrons with i
= j. Only the terms with i s j need by calculated. Note that since

'Pi f ajeis i dv,

then

"9;" fo aj is i dv.

Derivation of Equation 3.21

In the derivation of equation 3.21 we must show that

2

j~k i

= 1j12.

j

We can write

WE1 2

YI o

= 0101 + 14 + - + Z4

= lfll2 + 919 + 241 +-+ k02I +so Z + 1~oj 2.
IOp

Therefore

21 i j-k -
j~k

2 1 fjl21p
IY p Y-j2

j k

8

= 601 + �02 + - " �0,%P*i + 'P*2 + "' + 4)
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Page 93: Sentence Following Equation 3.21

Aside from a factor of c/87r the total intensity is the average of the squared ampli-
tudes (mean square amplitude). The coherent scattering is the squared mean amplitude
(as we noted under "Page 93: Coherent Scattering").

Page 94: Definition of Atomic Scattering Power

From equation 3.17 the definition of f0 on page 94 gives

atomic amplitude

electronic amplitude

IE IL Pj
i '

IEel =I , p 
Ij

This expression is good only for high-frequency x rays.

Equation 3.23

The element of volume in spherical symmetry is 4irr2 dr. When p(r) (probability per
unit volume) is given, the number of electrons between r and r + dr becomes

p(r)4irr2 dr U(r) dr,

where

U(r) 4irr2 p(r)

and thus

U(r)
47rr2

Page 95: The Atomic Scattering Power

Unlike section 3, in section 4 two other forces are now added to the equation of mo-
tion: the centripetal force and a velocity-dependent force. Both have minus signs, and
they tend to decrease the effect of the applied force

_ E iOt-i 2 rkO-rj
E~oe.

9 
2_

D-

fo =

1_.

M.

rr
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Again, we must solve the ordinary second-order differential equation 3.27 and obtain equa-
tion 3.28. Thus equation 3.29 is the revised expression for atomic scattering power for
lower energy x rays.

Page 96

Equation 3.31 is written in a purely formal manner. It implies that the scattering
power f contains an imaginary part due to the radiation damping, and a real part which
may be split between f (high-frequency limit) and the binding-force term m x Equa-
tion 3.31 can also be written as

f = f0 + E fj( j + ini) 'Pi j( + tj + inj).
i i

Section 5: First Paragraph

The vector a is the lattice parameter, and xi is a number defining a fraction of this
parameter. In the definition of structure factor (scattering power of a unit cell) the same
provisions apply as in the atomic scattering factor.

Equation 3.32

In Equation 3.32 E2(r) is a single function (distribution function), whose Fourier com-
ponen'%s are &2H. These are related to each other by the Fourier reciprocity theorem.

Equation 3.36

Equation 3.36 is analogous to equation 3.22.

Equation 3.38

Again, equation 3.38 states that the structure factor F0 is the sum of individual scat-
tering powers of atoms, each of which is multiplied by a phase factor. Particular note
should be taken of the remarks following this equation.

Equation 3.44

For a unit cell with large or appreciable anomalous dispersion, the expression for F
(not FO as in equation 3.38) is

F = Zkesrk,
k

10



where fk is the scattering power for the kth atom and is given by the expression

fk = E (1+ j + ij) k
fk c

Equation 3.31 is the same expression without the superscript k.

Equation 3.45

When the distance R is large compared with the crystal dimensions, the waves arriv-
ing at the observation point are "plane." The "plane-wave approximation" does not, ob-
viously, hold for very small R. In the way the phase factor eiS AL comes in the expres-

sion, the inherent assumption is that various unit cells in this crystallite radiate with the
same strength aside from the geometrical phase factor. No absorption or other dynamical
effects are included.

Equation 3.47

In equation 3.46 the first of the three summations on the right is

N 1-1 N l1 > )
N- eiLisal =N-eiLsa(i )

Lj=O Lj=O

N1 - [ei(Li+1)sal _iLls-al

=j=

eis al 1

e iNlsal _

eiS-al 1

Thus the product of the three summations follows as given in equation 3.47, with the sum-
mation index being i = 1, 2, 3.

Equation 3.49

All three Laue conditions should be satisfied simultaneously.

Equation 3.52

Equation 3.52 states that when the Laue equation is satisfied the quantity FH (struc-
ture factor for s = SH) can be defined as

11MM.. POrI 756rr
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FH = 2 ke i27rBH rk

k

Note how this equation may be evaluated for various crystal structures to give usable ex-
pressions for structure factor; see, for example, Azaroff [1] and Cullity [6].

Middle of Page 101 to Middle of Page 102

For future convenience let us correct the assumed variation in the angle 20 by writing
20 + 2 £ (rather than 20 + e ) so that the angle of incidence will change to 0 + . Then
let us substitute 2 for £ everywhere. Equation 3.56 becomes

IeIFHI2N2e ( X2 )4£2D2cos 20B

and equation 3.57 becomes

(£)1/2 7 2D cosOB

There is in principle no difference between this and equation 3.57.

Page 102: Discussion of Absorption Processes

Distinction is made here between photoelectric absorption and extinction. Our ex-
planatory note above on equation 3.45 pointed out that absorption effects are not included
in that equation.

Page 102: Primary and Secondary Extinction

It is perhaps appropriate at this point to discuss the relationship between the half
width of the rocking curve and the concept of extinction.

A brief explanation of primary and secondary extinction is given by Zachariasen in
Chapter 4. Here, for definition alone, we choose the Darwin model of the crystal: The
bulk crystal is composed of small crystallite blocks, each block oriented at a small (mis-
orientation) angle with respect to its neighbors. Both the block size and the misorienta-
tion angles may be assumed to follow smooth, normal distribution functions. The line
shape (diffraction pattern) for each block may be assumed to have the form derived in
equation 3.54.

Absorption in a perfect crystallite is made up of two distinct processes. Consider
what happens when the crystal is rotated with the respect to the collimated, monochro-
matic beam, toward the Bragg angle OB. At considerable angles outside OB, the crystal be-
haves like an amorphous absorber and the penetration of the beam into the crystal may be

12
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relatively high. If the linear absorption coefficient is M, the "absorption distance" 1/p may
reach several millimeters. As the Bragg angle is approached, a greater and greater portion
of the incident photons contributes to diffraction, and simultaneously the depth of pene- -

tration is rapidly decreased. This rapid reduction of the primary beam during diffraction
in perfect crystals (so-called primary extinction) is due to multiple reflection of the beam
from neighboring planes: At each double reflection the phase of the reflected beam is
1800 behind that of the incident beam. Thus it may take no more than a hundred thou-
sand atomic layers before the amplitude of the incident beam dies out. This distance of
104 to 105 atomic layers is called the "extinction depth" (see Auleytner [7] ).

Consider now what happens when an aggregate of mosaic blocks (a mosaic crystal) is
made to rock around the Bragg angle. The future history of a parallel pencil of x-rays
arriving at the crystal surface is determined by several factors:

* Photoelectric absorption coefficient p

* Misorientation angle between the blocks,

* Size of the crystallites,

* "Natural" half-breadth of the perfect crystallite.

If the mosaic blocks were so large compared to the 1/,u distance that no significant
radiation could pass through a given block after ordinary absorption, then, by using a small
beam, one should see the same half breadth for the bulk crystal as for the perfect crystal-
lite (beam 1 in Fig. 3 is a qualitative example). If the x-ray beam covered an area con-
sisting of several blocks, the effect of the misorientation between the crystallites should
also be seen in the rocking curve by a multiple peaking, the amount of which may vary
depending on the geometrical divergence of the primary beam.

3

Fig. 3-Examples of beams incident from the right which are (1) totally diffracted, (2) totally
absorbed, and (3) partially absorbed and partially diffracted
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If the absorption distance 1/,u is much larger than the average size of a given block,
and if the block size in turn is larger than the extinction distance, then the beam, if not
totally diffracted by a given block, may penetrate farther into the crystal, there to be dif-
fracted by another block of proper orientation. (Beam 2 is an example in which the dif-
fracted beam is totally absorbed.)

Finally, if the absorption distance is much larger than the extinction depth, and if
this in turn is larger than the block size, part of the incident beam (beam 3) will remain
unabsorbed after diffraction by each block, to arrive at lower lying crystallites.

The loss of power of primary beam due to diffraction by crystallites prior to the ar-
rival of a beam at the block under consideration is called secondary extinction.

Equation 3.58: Absorption Coefficient a

Note that p here is the linear absorption coefficient. In some books(such as Jenkins
and DeVries [8] ) it stands for the mass absorption coefficient.

Page 103: Comments Following Equation 3.58

The reader should pay particular attention to the comments following equation 3.58
which describe the condition under which the intensity formula 3.48 holds.

Section 7

The program of section 7 is to consider the three methods of obtaining diffraction
lines and to derive an expression for the intensity of a small crystal as a function of appro-
priate variables. Thus an initial parameter E 1 is chosen which corresponds to the "most
important" variable in each of the three methods. For example in the Laue method this
corresponds to a change in the wavelength in the neighborhood of Bragg X. If a detection
surface is chosen (such as an ionization chamber), then the total power received by the de-
tector is the integral of the intensity (function of 1) over the entire surface of the detec-
tor, where at the same time the variable 1 covers all possible ranges, hence equation 3.63.
The definition of A at the beginning of the section (equation 3.59) is for the sake of sim-
plicity. The integration of IH as a function of A may be further simplified if an explicit
form for A can be obtained in terms of 1, 2' and e 3. Then the integral takes the form
given in equation 3.67.

The surface element in each of the three methods can be easily evaluated. For ex-
ample, in the Laue method it is obtained by "measuring" the latitude and longitude
through which UH may vary. Obviously dS is the area of a rectangle on the surface of the
sphere (Fig. 3.4) whose sides are R d 2 and R dE3 .

14
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Derivation of Equation 3.65

B
Referring to Fig. 3.4, we fix the direction of incidence. Thus u = u. Since

A = S - sHE we may write

2ir B B
SH = (UH - U)

H

and

27r 27r B

= -(UH - UO) = -(UH - U).
XH XI-

Even though in Fig. 3.4 the directions of UH, UH, etc. are shown far apart, we must
remember that their separation is of first order in 1, 2 3, which are small quantities.
From equation 3.64 we obtain

1 1 1

+ H H\ H /

1

XH
x 2 

B B 0
Next let us decompose the unit vectors uH, U, UH along the set of axes T1, T2 , T 3 . The
vector u8 is in the -Tl2 plane. Therefore

UH = cos 20 r1 + sin 20 12.

The vector uB is oriented along T1:

B
U0 = o

The vector UH has all three components; the T3 component is

1UHI sin 273 = sin 23-

Its projection on the T1 T2 plane is

IUHI cos 2 = COS e 2-

Therefore we have

UH = cos 2 [cos(20+ 3 )]rl + cos 2 [sin(20+ 3)T2 + sin 2T3.

We expand cos (20 + 3) and sin (20 + 3 ) to get

cos (20 + 3 ) = cos 20 cos 3 - sin 20 sin 3

z cos 20 - 3 sin 20

C=

15 <I,

r-

<-

rr
Cs--
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and

sin (20 +E3) = sin 20 cos 3 + cos 20 sin E 3

sin 20 + 3 cos 20.

Now

27r(uH-u)[ i - (XTB)2 -2r B B

27r B 27r E£1 B

(UO - UH) -(B)2 (U -U0 ), (1)

B
UH - UH =E 2T3 + 1 (cos 20 - 3 sin 20) + 2 (sin 20 + 3 cos 20)

-cos 20 T - sin 20 r 2

= e 23 + (2 cos 20 - T sin 20)E3, (2)

UH-B = T UH - U = 2r3 + T1(coS 20 - 3 sin 20) + T2 (sin 20 + 3 cos 20) - rl. (3)

Substituting equations 2 and 3 into equation 1, eliminating all powers of 2 etc., we get

27r
S SH = B [ 22 + ( 2 cos 20 - l sin 20)E3]

27 r [{l(cos 20 -1) + 2 sin 20]}

or

27rF£1 27r
S - SH = (xB)2 [T1 (1 - cos 20) - 2 sin 20] + B 362

27rE 3
B (T2 cos 20 - 1 sin 20),
H

which agrees with equation 3.65 as given in the text, except that in the text the subscript
H has been dropped for convenience, since it is understood that all the equations are written
for the same set of Miller indices represented by H.

Jacobians

The concept of a Jacobian is used whenever a change of variable is necessary in a
multivariable integration. In the simplest case, a change of variable from x to y, say, when
y = f(x), is effected in the following way:

16
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dy = a dx.dy=ax

Thus, in an integration with respect to x, the differential dx may be changed to dy if it is
rewritten as

dx= 1 dy ax dy.
ay/ax ay

When the number of variables is more than one, the Jacobian may be shown to take the
form of a determinant. For example, the three variables y {y, Y2, y3} may replace
x {xl, x2, X3} by introducing the Jacobian

ay, ay, ay,

ax, ax2 ax3

aYA) = ay2 ay2 ay2

\ax1/ ax, ax2 ax3

ay3 ay3 ay3

ax1 ax2 ax3

Consider now a vector function A decomposable along the three coordinates 2r1, 12,

T3. The Jacobian which transforms the coordinates from e 1, e2, E 3 to P1, P2. P3 (equa-
tion 3.59) can be written in a simple form, with the aid of the rules of expansion of determi-
nants. For this purpose let us consider the derivative of the vector function A(61, e2, 63) or,
in general, A(x1 , x2 , X3) as a three-component vector in a rectangular coordinate system:

aA = aA el + aA 2 + aA e3
axi -e 1 axi + x

where Al, A2 , A3 are the components of A along the unit vectors el, e2 , e3. Without be-
ing too concerned over the mathematical rigor, we may formally regard

M as "equivalent" to ayi

ayi

assuming A can be expressed in terms of both x and y. Because of the implicit relation-
ship between x and y (or ei and pi in our problem) we may furthermore set

J I 

apA, as equivalent to JI-).

Ja i )
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The reader may use the expansion of a three-by-three determinant and prove to himself that

A ~ ~ ~ ~~a
CTX i) ax, 1 X2 ax 3 /

where in that determinant each row contains the components of the derivatives a/axi.

Now, to evaluate equations 3.68a and 3.68b, remember some simple rules on cross
and dot products:

T1 X T1 0, T1 X T2 = T3 , 72 X = -T-3, etc.

Tj T 1 1, 71'T2 = 0, etc.

To evaluate the Jacobian (aA/k 1 ) [(aM/s 2 ) X OA/MIb3 )]:

a__ (XB)2 [l(1 - cos 20B) - T2 sin 2OB],

aA aA _ [27r 27r (
tbe2 a63) LB T3 X B (2 cos 2B - 1Ti sin 20B)]V2 3/ [X~H H

47r2

(X()2T cos 2 0 B - T2 sin 2 0B),

and

faA \ / )aA a/ 87r3

t\aE1) KaE2 3X-) (XB [(cos 2 0 B - 1) cos 2B + sin2 2 0 B]

= 8B0 [cos 2 2 0 B + sin 2 2 0 B - cos 2 0 BI

167r 3 2
- (xB )4 si OB.

Equation 3.71

In equation 3.71, V is the unit cell volume, V is the unit cell volume multiplied by
N 1N 2 N3 , and the notation is somewhat misleading.

Equation 3.74

The surface element given by equation 3.74 is the area of the rectangle swept by the
tip of UH, as 2 and 3 are varied (Fig. 4):
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dS = (R Cos pd 2 )Rd( +3)

or, because p is a fixed angle, -

dS = R cos pd 2Rde 3

= R2 cos d 2 d6 3 .

R Cos e d2 

Fig. 4-Geometry pertaining to equation 3.74

Derivation of Equation 3.75

In deriving equation 3.75 we will use the expression for s - SH = A as defined previ-
ously by equation 3.65. However the variable E: now refers to the rotation angle from
any u0 to ut. This rotation is defined in equation 3.73. Thus, with reference to Fig. 3.5,

U0 = U0 + 1T3 X UB = UB + 1 COSXT2U0 0 U0

= cos Xr + cos Xr 2 - sin XT3,

UB = cos xT - sin X73,U0 si

UH = sin (p + 3)r3+ + COS(+6 3)[coS ( + 2)T1 + sin ( + 2)T2],

UH = sin () T3 + cos p[cos VI 1 + sin r72 1,

2ir B B 2XB B

A = S - SH= [(UH - UO) (UH -U) (UH UH + U - UO).

Again we expand sin (p + 6 2) etc. using the approximation of small e3:

sin ( + 6 3) = sin p + 3 COS P,

cos(so+e 2 ) = cos p - 3 sinp,
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cos(4 + 2) = cos - 2 sin ,

sin(4 + 2) = sin + 2 cos .

Then

UH = 3 (sin , + 3 cos ,o) + Tl(COS s - 3 sin p)(cos 4'- £2 sin 4I)

+ T2(COS ep - 3 sin p)(sin + 2 cos 4V)

= T3 sin , + T3E3 cos s + T(COS p COs - 2 sin cos p- 2 sin cos )

+ T2 (COS ,p sin - 2 sin f sin + 2 COS cosp).

Rearranging in terms of 1, 2, £3, we get

27r 27r
A = S - SH - COSXT2£1 + COS pE2(7 2 COS4' - l 1 sin 4')X~~~~

27r
+ E 3(-sin cos 4r 1 - sin p sin 0,12 + cos 0-3).

The minus sign in the £1 term is missing in Zachariasen's book and needs to be corrected
there.

Derivation of Equation 3.77

Equation 3.77, as derived using equation 3.75, is

I~ a aE XE \ aA 2r 27r \ 2E
:a)1 . a 2) ae__ = 7 cos Xr2 p sin T X cos T3

= ( 3 S cosX cos 2 p sin .

In this derivation only those terms in 1, 72, T3 were written out which would give non-
zero contribution to the result of the cross and dot products.

Derivation of Equation 3.79

We know that cos 20 B is the dot product of incident and diffracted unit vectors:

B BU0 * UH = cos2OB.

Let us decompose u and uH along the three directions 1, T2 , 13.
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U0 = (cosXr 1 - sin Xr 3 )

and

B
UH = (sin pr3 + OS p0 COS 1]1 + OS ~p in 4r2 ).

Taking the dot product,

U0 UB = (COS XT 1-sin Xr3) (sin pr3 + cos (p cos IT 1 )

or

COS 2B = COS X COS Po COS - sin X sin p.

Two errors exist in the Zachariasen version of this result (equation 3.79).

Equation 3.80

In the powder method, the variable 1 is associated with the variation in the Bragg in-
cidence angle, that is, the variation between u0 and u B (Fig. 3.6). If all directions of inci-
dence become equally probable, then in the calculation of intensity a required term is the
probability of finding a photon at the glancing angle in the range of OB + 1 and B + E +

dFl as a function f OB. To do this we draw the cone of axis BH and semi-apex angle
(1r/2) - (OB + E) (Fig. 5a). Now we change B + 1 to OB + + d 1 (Fig. 5b), and we
calculate the fraction of photons that arrive at the apex of the cone through the small area
of the circular strip. We find

area of strip = (27ra)r dO = [27rr cos (B + 1 )]r d 

= 2rr2 cos (B + E1 )dEj.

The total area is that of the surrounding sphere: 4rr 2. The
mines the probability w d 1 (equation 3.80):

Fig. 5a-Circular cone about the vector BH

ratio of the two areas deter-

Fig. b-Circular cone of Fig. 5a plus an
incremented cone

21 :

:.
I-

~r
Mr
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wdo1, area of strip = 2irr2 cos (OB + 1) d~l
area of sphere 47rr2

2 COS B dej.

This probability factor must be multiplied into the intensity expression according to
equation 3.81. The surface element for the ionization chamber is easily seen to be R d 1
R de2 = R2 de 1 de2 , and equation 3.81 follows.

Derivation of Equation 3.82

Calculation of A follows the same line as in previous sections:

A = X [(UH - UO) - (uH ) - SH,

UH e 3T3 + COS (OB + 2)T2 + sin (OB + 2 )T1,

UB = sin OBT1 + COSOBT2,

UO = -sin (OB + l)T + COS (OB + el)T 2 ,

B+
UO = -sin OB 1 + COS OB 2,

COS (OB + 2) COS OB - sin OB 2,

sin (OB + E2) sin OB + e2 coS OB

2T
A = 2 [e373 + (cosOB - sinOB62)'r2 + (sinOB + 2 COSOB)Tj]

+ - [(sin OB + cOs B )T1 - (COS OB - sin OB l)T2]
X

27r
+ [-cos OBT2 - sin OBT1 - sin OBT + COS OBT2]

= el(cos OBr1 + sin OBT2) + ys2(COSOBT1 - sin OBT2) + 373

Equation 3.85

As stated by the equation directly above equation 3.85, the intensity expression is
an expression of the form

JH = 0 Q5V,
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where V is the volume of the crystal (not the unit cell volume) and Q is an expression
which in the kinematical theory is well defined as soon as the experimental method is
given. In the powder method, there is also the multiplicity factor which takes into ac-

count the contribution due to different atomic planes of the same type. In this connec-
tion it is important to read carefully the paragraphs of section 7. following equation 3.85.

Pages 111 and 112

Paragraphs on pages 111 and 112 contain important information regarding the differ-

ences between dynamical and kinematical theories. A large group of mathematical defini-
tions appears here with that of the direction of n (page 112).

Equation 3.88

In equation 3.88 the vectors Do and Po inside the crystal medium replace E0 and
ko outside. Both these numbers are very nearly the same, that is, Do E' and ko t Po
subject to equation 3.89. To solve the problem two conditions must be satisfied: The
first is the boundary condition that at the surface (where n * r = 0)

external incident wave internal incident wave.

The second condition that must hold is the "self-consistency" of internal waves (incident
and diffracted).

Derivation of Equation 3.90

According to equation 3.89

Poo = ko(l + 60)

or

2 = k2(1 + 50)2 k(1 + 26o).

Now we set

Do eiooti2ft*r Ee eicot-i2 ko- r.

At the boundary we have

eiw-t-i2 r eiwot-i2lTko-r

or

-i2Tflrr = i2rko re e~
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When two exponentials are equal, the exponents are equal, to within an additional 2r:

Po r = ko r.

Since adding a zero term on the right does not change the equality, this zero term can be
in the form of a dot product with r. Specifically,

P- r = k r + An r,

where on the surface n * r = 0 and the factor A is necessary to make the equation valid
everywhere else:

Po = ko + An.

Thus outside the crystal we have A = 0.

To obtain equation 3.90, we square the quantity P0 obtained above, that is, dot it
into itself:

g2 2+2A

0 o ko + 2An ko.

We had p = k2( + 2 o), SO that

k2 + 2An ko = k + 26k2

or

A k= 2 50ko oko
n ko n u 70

Therefore

o = k + An = k + ° n

where yo is the direction cosine of the incident wave:

cos = yo = n * U -

Equation 3.91

Remember that the product of the electric field and the dielectric constant defines
the displacement vector.
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Equation 3.92

The subscript H refers to a set of Miller indices hlh 2h3 . One may however assign an -

"order" number 1, 2, 3, etc. to each set (hlh 2 h3 ) or diffracting waves in equation 3.92.

Thus in equation 3.92 H may be a number like 1, 2, etc. rather than a set of three num-
bers. Also notice that the total diffracted wave D is the sum of several DH multiplied by
phase factors.

Middle of Page 113

It is important to keep in mind that we are dealing with a two-wave diffraction (Do
and DH). The interested reader may search the recent literature for three-beam diffraction
studies.

Equations 3.93 and 3.94

The dielectric constant of a crystal lattice is only slightly different from unity. The
difference between the constant and unity is approximately 47ra, and this quantity is a
function of the periodicity of the lattice.

The factor 47ra is a scalar quantity. From optics and electricity-and-magnetism theory
we know, however, that the dielectric constant has both real and imaginary parts and the
imaginary part is related to the linear absorption coefficient. (We will consider more de-

tail on this point later.) We can therefore expand the quantity 4irx into a Fourier series:

e 1 + 4ro = 1 +

where

dP = EAH e-i2 rBH-r

H

Remember that BH is a vector of the reciprocal lattice and the product BH r is
dimensionless. The subscript H refers to any one of a number of possible sets of three
Miller indices that give rise to diffraction. The components H of the Fourier expansion
can be evaluated by the usual method based on the orthogonality of the exponential func-

tions:

'PH = -JPei2rBH rdv

(the summation is over H, the integration is over dv). Thus, every vector BH or SH has
assigned to it a subscript H for which a component A1H may be defined.
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Equation 3.95

To get equation 3.95 from equations 3.41 and 3.42, we note that

e2

F= 02 

mw 0 1 Vlei27rBH r dv
e2 4 J-

2
C 0 V IIJH

e2 47r

or

47re2
'PH- mw- FH,

where we call the particular F, related to the subscript H, by the symbol FH; that is FH

is the value of structure factor F for s = 27rBH.

Equation 3.96

We have

n = ./ri= V/fF 1 + 2i
2

where is a small quantity ( << 1).

The real part of the refractive index is the factor responsible for dispersion (because
n is a function of wavelength). The imaginary part of n leads to a phase shift in scattering
or to true absorption.

Equations 3.97

We had, from equations 3.95 and 3.41

47re 2

'P = 4ra = - 2 (1 + tj + ij)j

-- + WId,

26
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where

A' = - re2 (1 + j)

jW2 

and

," - 4ire2 E Q

The expression for index of refraction thus becomes

1
n = 1 + - = 1 +

2
-(,'+i ") = 1 +
2

The imaginary part of n is 1/2 ".

Equation 3.99

When both u and 4 are expanded in a Fourier series, we have

= E1 gHe-i27rBH r

H

and

4 = 21 ,He-i2rBH r

H

with

O = 1 Je i27BH-r dv.

This implies

4, = V Feri2iBH rdv
H - -j w ~ i

1 I

2

.1 V
2

:;Z
27 Cn

r-
:Z.,

4.11�

-r!
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and

Vl/ I 1 lwi27rBH r dH= I fee TIHrdv.
V

If

P= 27r ,

X0

then

27r ,, 2 4e 2

PH - H 2
No \X0 mw 0

1 LI ru1ei2 rBH r dv.

qj n

With wo = 2r(c/ A)

2e2X0o\
H mC2 V T. j

i

f 2 e i27rBHr dv.

V

Equation 3.100

To obtain the average coefficient, the set of values (hlh 2 h3 ) are set at zero; that is,
the phase factor is 1.

Equation 3.101

The average real index of refraction is 1 + ('/2), so that 4' = o can be obtained
by the same method we used for equation 3.100:

= = 'HIH=O = - r 2 FVmw V

4ire2 Z (
mxWW - (1 + 0

47re2

mCo0 V LY (1 + j)Zj,

where equation 3.42 is used in expressing F0, and where

J nj dv = Zj

Q dv

28
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because it simply states that the density of electrons integrated over the entire volume
should give the total number of electrons (of type j).

Equation 3.102

29 

:

-r

MG

The first sentence of section 9B is important. The more familiar form of equation 3.102
is

1 2 D
V X (V XE) = - at2

which may be rewritten as

(1- )E =e E =).

Derivation of Equation 3.103

Let us write

9) = r DH eiSoti21fiHr

H

Then

DH e -i2TPH r E
L

DL e-i2rHr)

Here H and L are equivalent dummy indices. We expand E in a Fourier series,

= L OK e-K *

K

and obtain equation 3.103:

(1- 4/) = eot L DHe-i2lrpH r

H

a - VI) 5 = eiciot

H

-i2ir(PL+PK)-r- /Tj T DLOK e

L K
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Derivation of Equation 3.104

Starting with equation 3.103, we have

(1 - ) 5 = eot [4 DHe-i2pHr -

H

= eot DHe-i27rpH r _

H

= eiwot tEDHe-i27rPHr _ 

H

Ti 21 DL Kei2f(PK+L)r]
K L

T y 1 DL HL ei2"PH .r 
H-L L

C -i2-7rpH r H1 CHe H
H

21 DL H-L = CH.

L

Derivation of Equation 3.105a

From equation 3.104

V X [V X (1 - )D] = -H X [H X (DH -CH)] ,

and from equation 3.92

12 a2 =2 E 2 g) eiwot-i2rTPH-r = 02 D 2
C2 at 2 =L C-2~ He !

H

Therefore,

-PH X [PH X (DH -CH)] = kDH-

Derivation of Equation 3.105b

We have

-PH X [PH X (DH - CH)] = H X [(DH -CH) X H] = kDH-

where
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To expand this, we use the rule in vector products that

A X (B X C) = B(A C) - C(A B),

so that

2 XH[ H - 2
IPH X [(DH - CH) X 3H1 = (DH - CH)(I HPH ,(DH - CH1)]I kODH

or

2 = 2 2- C-IH PHI [OH (DH -CH)] (k 0-jH)DH 1.

Now

pH (DH - CH) = iH DH - JH CH = -PH CH

because

PH. DH = 0

(which can be seen by dotting both sides of equation 3.105a into PH), and we have from
equation 3.104a

-pH CH = -pH (E

L

4HLDL)X

which we insert along with equation 3.104a into our last equation in the preceding section
to obtain

L [4'H-L(pH' DLAH - H-LIHDLI = (2 2 p2)DH -0 j H D 1

Middle of Page 116

"Transverse" in the discussion following equation 3.105b means having components
normal to the direction of propagation. Mathematically this is written as DH * 1H = 0,
where PH is the wave vector. The equation V = 47rp, where p is the charge dnesity, is

one of Maxwell's equations. Using this, we get

V. * =V DH eiot-i27rlH*r

H

31 <_
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PH i eiwt-i2fH r

H

since applying the operator (V-) on the vector sum is equivalent to the product PH -
!DH, where PH is the "derivative" of the exponent. Thus

DH H = 0 implies V = 0.

This last equation is good for the oscillating part of the displacement vector, since the
divergence of the static part is not zero.

Derivation of Equation 3.106

To solve the complicated set of equations 3.105, we must use some approximations.
First let us assume that the Laue equations are not satisfied for any bector BH; that is, let
us assume that the x-ray beam arrives at the crystal surface in such a way that the angle
of incidence is not equal to any Bragg angle with a "detectable" diffraction amplitude.
The only component of D is then Do. Others are "relatively" zero; that is, there is only
an incident beam of displacement amplitude Do. With all DH equal to zero, equation
3.105b will become

Vjo(o Do)o- 4ooDo = (k2 po)Do

(because H and L are both zero). However P0 Do = 0, so that

-002D = 2 2)D..loloDo =( 0 - 0)D0

or

(1_O~ 2 2
(1- i 0)f 0 = o

or

2
2 _ ko1u - i00

which is the first part of equation 3.106. Since 00 is very small, we may expand this ex-
pression and get

o 1 2 (1 2 )

which is the second part of equation 3.106. Remember that 1 + (1/2)4/o is the average
refractive index.

32
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Equation 3.107

To derive equation 3.107, rewrite equation 3.105b in the following way:

Z I[iP-L(M- DL)M - M-LM (kL-I)DM
L

Since the summation is over L, each M refers to a separate equation.

For M = 0,

Og2 D =( 2 _2 )O
-L( * DL)O - L 6ODL (k0 - f 0)D0.

L

Since DL = 0 unless DL = DH and DL = Do, we have

O-H(O- DH)O + 0(po- Do) 1 -- HoODH - g2 Do = (k02.13 0)DO.

We note that P * Do = 0 and set Q--H = O to obtain

Oi(O- DH)O - AHp2ODH - opoDo = (k' - p2)Do,

which leads to the first of equations 3.107.

For M 0 0, the right side of equation 3.105b contains DM, which means M = H.
Summing the terms for L = H and L = 0, we get

002 p2 2 2
OO(H DH)PH - OfHDH + H(H DO)OH - HHDO = (ko -1H)DH-

Again the first term in this expansion is zero (pH DH = 0), so that

OH(PH DO)PH - HOHDO - O0HDH = (ko fO)DH.

Since DH is a linear combination of PH and Do, it lies in the same plane as Do and PH
Furthermore it was already shown that PH DH = 0; that is, PHis normal to DH. Thus
the three vectors PH, Do, DH are all in one plane and arranged as shown in Fig. 6. The angle
between Do and PH will be designated as x.

Derivation of Equations 3.109

Approximating p2 and gH according to equations 3.108, we get
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H

Fig. 6-Vectors of equa-
tions 3.107 (all are co-
planar with the page)

2 2 ~~2 21ko - 0( - 0) =ko - kol + 2,,)(1 - So)
k2 - k(1 + 20 - O0)

2-k (250 + i/0)

and similarly

k2 _ o2H(1 - o) -ko( 26 H + 0).

To get the first equation 3.109, we use the first equation 3.107 to write

oy(po DH)O -Do OWgoDH Do -k(25 0 + oW2

or,(remembering P * Do = 0)

0 - iyko(l + 260 )DHDO sin X = 2(25 - O)D2

In this equation the right side is a very small quantity, because both 2 0 and 04 are small;
it therefore makes sense to regard the factor (1 + 2 o) as almost equal to 1. Then we get

(28 - QO)D - AHff sin XDH = 0.

Similarly for the second equation 3.109, we begin with the second equation 3.107 and get

(2 6 H - O)DH - H sin X Do = 0.

Equation 3.110

In equation 3.110 a distinction is made between H and i/f, that is, between the two
components when planes of the form (hkQ) and (hk2) are considered. We will later discuss
the conditions under which Vi/q may be set equal to H, although in most derivations we
will set the two approximately equal.

34



NRL REPORT 7556 35

Page 117: Normal and Parallel Polarization

Let us remember the waves are transverse. Moreover, let us note that sin X appears _

in the product 4ij sin X only. We will set sin X = 1 and assume normal polarization (Fig. ,

7). When the need arises, we will replace 0,ff by 4jy cos 20 for parallel polarization.

A_ _

117
X 2

ksin )

60 AH

ssidSS#;;4~~~~~~~~~~~~~~~~

A H

AH

Fig. 7-Waves with parallel polarization (left half of figure) and normal polarization (right half of figure)

Derivation of Equations 3.113, 3.114a, and 3.114b

Starting with equation 3.112, we have

pH = k + o n + BH

I = H PH = (ko + a n + BH) (ko + k n + BH)

= k + 050 + B + 2U0 n koo 2okoBH
0 r2o 'Y0 70

+ 2ko- BH-

0
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Imoring ko22/yo in equating the preceding equation and equation 3.108, we get

2 = 2 2 2 k' 0 _ _ _ _ _ _ -ko(l + 2H) = k + BH + 2o n 0 + 2kOBHn + 2k BH

k + 2 Hko

or

2 ___ kBn
5H BH = 2k BH 0 0+ 2 - 0 

0 2ko + 0 2ik ,y 0

or

+ 1 05H -2 b 

where

1 2c°= k~ (BH + 2ko BH)
0

and, since u* = y0,

1 = 1 + BH n
bb n k 

The quantities 0 and H are related to the internal incident wave and the internal dif-
fracted wave. The wave vectors and H of the internal incident and diffracted beam
are related to the incident wave vector ko through the pair of equations 3.108. The quan-
tities 80 and H are obviously small quantities, so that there is experimentally a very small
difference between the various refractive indices. Equation 3.113 enables us to evaluate
5H as a function of 80 and the wave vector of the incident beam. The quantity 80 itself
is related through equations 3.108 and 3.106 to Q0 and thus to the average refractive index
of the medium. From equations 3.113, 3.114a, and 3.114b we see that H contains a part
which is approximately equal to 0 plus another part /2 of the same order of magnitude.

Derivation of Equation 3.115

B BFrom equation 3.114a and the relation BH = kH - kB

n ko
b=n (k + B- kB

Numerically Ikel t IkB, because the wave vector does not change its value by much in
diffraction. Thus

36
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B B Bn k k n * 70 T n 0 k0 nu 0

7 ~ = - -
n . kH kHn uB 'YH-

Derivation of Equation 3.116

Referring to the Laue diagram in the reciprocal lattice (Fig. 3.2), we can easily write

B B
BH = kH k .

Substituting this in the expression for a (equation 3.114b), we get

1 B B B(k
° = k [(kH)2 + (ko) 2 - 2kH k B + 2ke k - 2ke * kB].

ko

The first two terms and the last term cancel out, as they are approximately equal and con-
tain no cosine term. The remainder is

a t k [-2koCOS 2B + 2ko cos ( + OB)] -2 cos 2B + 2 cos ( + B).
0 

To get rid of cos 20 B' we rewrite 0 + OB as 20 B + ( - OB) or, in turn, as 2 0B + AO and
evaluate

COS (20B + AO) = cos 20B cosA - sin 20B sin AO

cos 2 0 B - (sin 2 0 B)(0 - OB)-

Substituting this in the expression for a, we get

a = 2(sin 2 OB)(0 B - O).

Derivation of Equation 3.117

The angle between uo and uB is not OB - 0, as the vectors uo can lie on a cone with
0 ~~B

constant 0 but changing the angle between uo and uo (Fig. 8).
We must resort to some mathematical tricks for the evaluation of the quantity (B -

0) sin 20 in equation 3.116. We write

U0

us 0~ ~ ~ ~ ~ ~~

Fig. 8-Geometry pertaining to the derivation of equation 3.117
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OB + = 2B - (B - 0)

or

cos (OB + ) = cos [20 B - (B - )] -

Now

COS (2 0 B - (OB - )] = COS 20B COS (OB - 0) + sin 2 0 B sin (B - 0)-

If OB t 0, then OB - 0 is small, so that

sin (OB - ) t OB - -

and

COS(OB -O) 1.

It follows that

cos (OB + 0) t cos 2 0 B + (sin 2 0B)(OB - )-

First, to evaluate cos (B + 0), we consider the plane which contains the incident and dif-
fracted beam (Fig. 9). The angle between the diffracted beam at the Bragg angle and the
incident beam slightly off the Bragg angle (the angle between uo and uH) is OB + 0. Thus,
with reference to Fig. 3.5,

cos (OB + O) = UO UH = COS X COS p COS + e 1 cos X cos sin 4 - sin ip sin .

Next cos 2 0 B according to equation 3.79 is

cos X cospcos - sin sin p.

From these last three relations we see that

(OB - O) sin 20B = e 1 coS X cos sin 4

8 UN
U0

Fig. 9-Geometry of the angle between uo and uH
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as given in equation 3.117-resulting from the "simple consideration" mentioned in the
sentence prior to the equation but rather tricky.

rr
Derivation of Equation 3.118 

Rather than expressing a in terms of 0, we consider X as the independent variable.
So (equation 3.114b),

a = k2 [BH + 2ko BHJ,

where (from equations 3.4 and 3.2)

XBI XB XB,

1 1 -
2 + 2 - o 0 

B XB XB

Similarly

2ko - BH = - 2 -- + 2 -Bcos 2OB
0 NO NO XO XB

Thus

- 2 cos 20B -
B

2 + xB cos 20B)
XOXB NO XBco

(1-cos 2OB) - 2 (1 - cos 2B)
XOB I

X2(l - cos 20B)[T2( - )]

= 2X (1 - cos 2 0 ) ( XO )
XB X

t 4 sin2 OB (NO - XB)

Equations 3.119 through 3.26

Equation 3.119 is derived using equation 3.113 in equation 3.110, the so-called dis-
persion relation, under the assumption of sin X = 1 (normal polarization).

2 UB
BH = H

(XB

2 2a = NO 2

(XB

2 2= 2
0 XB
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Substitution in equation 3.119 in terms of x (amplitude ratio, DH/DO) leads to equa-
tion 3.120. Either in terms of 60 or in terms of x the roots of the quadratic equation are
given in equation 3.121 or equation 3.122. The fact that two 's emerge from these equa-
tions implies that two internal incident waves exist. Moreover, for each x there is a ratio
between DH and Do. Hence two diffracted waves exist also. It is clear that the values of
these waves should correspond to the values of 50 and 6.

We write the total incident wave inside the medium as a two-component field (primed
and double primed)

eiw)Ot-i2ffko r[D' eisOlt + e-02tI,

where Pi and 02 arise from equation 3.90 in the following way.

Inside the crystal one should use p0, rather than k which from equation 3.90 is

e= ke + 05n

The additive term in the exponential becomes the multiplier in the form e ei 
with

901 = 2 1 °,

s02 = 2 kob
~Yo

and with

t = n r.

The quantity n * r defines the vertical distance from the origin to the point of observation.

It is obvious that the diffracted beam has the same form, the only difference being
in the addition of BH to ko in the numerator and multiplication of x1 and X2 (amplitude
ratios) by external amplitudes. (Remember DH = xD 0.)

Equation 3.127

The question of the boundary condition is rather involved and is broken down into
"Laue" and "Bragg" cases. However, the only additional boundary condition which can
be written down is the equality of amplitudes at n * r = 0 (crystal surface). Here the in-
cident wave outside is E and that inside is the sum Do + Do, so that D0 + D = E e

40
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Section 10: First Paragraph

Comments on the sign of b should be read carefully.

Equation 3.129

Substituting t = n * r = 0 in equation 3.125 and setting the quantity equal to 0, we

get 3.128:

xiD + 2D = 0.

This together with equation 3.127 gives us

X2 e
X2 - X1

D' - 1 EeX2 -XI

Equations 3.130 and 3.131

0e
The notations Ie' 1o have both an advantage and a disadvantage. First, they are con-

fusing as to which is the transmitted incident and which is the external incident wave. They

are at the same time mnemonically useful: interchanging e and 0 is like interchanging the

incident and transmitted waves in the Laue case.

The easiest way to remember the symbolism is to think of the ordinary 1o as the

original beam intensity and of the superscript e as denoting "external" To get equation

3.130, write

IH -
Io

IxiDoe iP°t + x2 De-i42t1 2

IE 12

and

(xOD'oe-ilt + 2 D';ei42t)(xD ei(oPt + 2D oei902t)*

= 1 X2 |(e-il _ e-i9°2t)(e-isolt e-402t)* Ee 1
X2 -X1

= X1 X 2 (C - 2 ) 2 e 2
= 1 X2 -XI I E01I

where

cl = e-iflt

and

C2 = ~iP2t
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In the same fashion equation 3.131 can be derived for the transmitted intensity.

Derivation of Equation 3.133

Equation 3.133 is obtained by working out equation 3.130:

IH = X1X 2 (C1 - C2 ) 2
Io Ix2 - X1 I

In deriving equation 3.133, one must remember that the quantity IHIO is real. This means
that the expression inside the vertical lines in equation 3.130 must first be expanded all the
way to separate its real and imaginary parts. That expanded expression is then multiplied
by its complex conjugate.

The quantities x1 and X2 are the two roots of the quadratic equation 3.120. From
elementary relations of the quadratic equations we know that if

ax 2 + bx + c = 0,

then

(X1 + X2) =-a

C
X1 X2 -

and

X1 - X2 = x+ - X = _____ac 

a

Here we have

bOHX1X2=- .

Hence

1Xlx1X2= i2 'PH 2 b21'H1 2

The quantity X2 - X1 is the difference between the two roots, and from equation
3.122 we find

2 q2 z 2 2 41q+z2 1
1x2 -X 1 12 ' 'PI 2

42
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Hence

X1 X 2 (C1 - C2 ) H2 C2 -c 12

X2 -X 1 I - 41q +Z 2 1 1 1 - 2

41q +z 2
j IC1 - C21

It remains to calculate I - c2 12. Be definition

cl -e-40to'

91j = 2 k5°,

Ci

C2 -iw02toC2 = e2 ,

'P2 - 2 
70

= 2 ( 4o - + Z

o =2 (o -z - q+Z2 ).

Before IcI - c2 12 can be calculated, c1 and C2 have to be written out explicitly in real and

imaginary parts; that is, z and \/-7Yz5 must be separated into real and imaginary parts,

where we have from equation 3.123

Z = 1-b 4' +2

and we define q -+z2 = v + iw (regardless of the values of q and z). Thus

Cl = e-(i27Tko5b /yo)to = e-ia(-0-z+ )

(where a - 7rkoto/yo) or

cl = e-ia[6+i0i0 5-(re+izim)+V+iW]

in which

1-b ,-+ b
Zre 2 2

and

where

in which
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1-b 1
Zim = 2 °

We can write

0' + W'o (Ze + iZim+) + V + iW = .- Ze + V + ( 0 2 0 0) + iW

-+i( 2 Q0 +

with t 4<o - Zre + v, so that

Cl =

Here at and a[(1/2)(1 + b)Q' + w]

C2

where

+ -z -v -iw

-iat a[(lI2)(1+b)g/+w]e e 

are real quantities. Similarly

-eia(4' +ih/"-z-v-iw)

=40 Zre V - Zim + iol - iW

_ q + i - -2b 5 - W)+ (/1 + b, -
n 2 0 

with -q Zre - v, so that

= e-iar7la[(1/2)(l+b)po-w]

We evaluate

1+ TO1+b H - 'YH 70_p
2 2 2 -yH

Now

IC1 - C1 2 = [e-ia ea(PQO+W) _ e~iaea(P"/' 6 w)] [eiatea(P"IO+lI) - eia7ea(pO '&w)]

2a(puX'O+w) + e2a(pt/-w) _ eia(t-17)e2ap1/ _ ea7 p'

e2apP'(e2aw + e-2aw eia2u -ia2v)

= e2(7[OkOtO/y)[(yH+y0)/2,yHl0'0( 2 cosh 2aw - 2 cos 2av).
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We define

where

= ) To 1 1
2 ~,y~yo ) 2( 0 YH

Next we rewrite 2 (cosh
that

2aw - cos 2av) in terms of sinh2 aw and sin2 (av). We recall

ei20 + e-i2O
cos 20 = 2

and

sin = eie eiO
sin O = 2i

so that

2-e 2 -2i0 + 2
sin 2 0 = 4

or

2 sin 2 0 = 1
e 2iO + e2

= 1 - cos 20

or

cos 20 = 1 - 2 sin 2 0.

Similarly

e20 e-20e2 +=e2
cosh 20 = 2

and

e° - e-0
sinh- 2

so that

e20 +e-20
sinh2 0 2 + - 1 = cosh 20 - 1

C:--,
45 '2-1

C-
r-
:C.
41,
IL,;

r1r,
t=

27rko�" (1/2)[(,yH-Iyo)/,yHyo) I toe 0 =- e-POt.
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or

2 sinh 2 0 + 1 = cosh 20.

(Both these relations could have been looked up in the handbook.) Thus

2(cosh 2aw - cos 2av) = 2(2 sinh2 aw + 1 - 1 + 2 sin2 av)

= 4(sinh 2 aw + sin2 av).

Finally

le= b2I4HI 2 e-Ot sinh2 aw + sin2 av
0 1 OH e_110t Iq+ 2 1

with

2 (70 YH)

In the fashion in which the quantities b, q, z are defined, it seems as though AH-is absent.
Closer examination of equation 3.133 shows however that q + 2 contains Hi-, so that the
expression is not asymmetric in H or AH. As it stands equation 3.133 is quite general;
there are no restrictions such as centrosymmetry of crystal structure, etc. Equation 3.113
has been used, which came about from an approximation of the form 3.108 and implies
that the relationship 3.133 holds when two internal waves exist and the geometry of "near-
diffraction" is satisfied. (An operationally meaningful measurement of diffracted intensity
requires that in the Laue case the intensity should be evaluated at n * r = to whereas in
the Bragg case it should be evaluated at n * r = 0.)

Page 121: The Bragg Case

In the Bragg case, one assumes that the diffraction takes place toward the face of the
crystal closer to the incident beam. We are not concerned with the situation in which a
mixture of Laue and Bragg could take place, as this implies more than one point in the
reciprocal lattice satisfying the Laue equations and interferes with our original assumption
of two internal waves only. (See page 116, section 9C.) Again using the always-valid
relationship 3.127, we get equations 3.136, which are similar to equations 3.129.

Equation 3.137

The quantity IH/Ie for the Bragg case (equation 3.137) is evaluated at n * r = 0,
whereas Ie/Ie is evaluated at n * r = to. Equation 3.137 can be derived with a little more
tedium than was equation 3.133 (but along the same line), because it contains more terms.
This derivation is left out of our notes.
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Although this equation does not contain an explicit absorption factor (e-90t), this does

not mean that absorption is not present, because absorption is related to the polarizability per ,

unit volume, whose value imposes a numerical condition on AH and 4iW. In particular, as -

stated at the end of the second note that follows, zero absorption means SHAkH= I H 2.

Page 122: Last Paragraph

Figure 10 may clarify the geometry of incident and diffracted beams in the evaluation

of the integrated power ratio. It is clear that the assumption

SH = 1
So IbI

holds only for small depths of penetration. An expression could be worked out for the

ratio SHISO as a function of depth of penetration. This, however, would be irrelevant to

the present problem, because in most cases the beam size is indeed large enough compared

to the penetration depth to satisfy the above relationship, and if the penetration depth
were large, the relations PH = IHSH and PO = IoSo would not hold true, as the intensity

would not be uniform across the beam (due to absorption), and both relations should then

be replaced by some sort of volume integrals rather than simple linear products. Note

also that the only case in which the cross-section areas of the incident and diffracted beam

are equal occurs when the diffracting planes are parallel to the surface of the crystal.

( a ) ( b )

Fig. 10-Geometry of incident and diffracted beams in the evaluation of the integrated power ratio for
the Bragg case: (a) Large depth of penetration and (b) Small depth of penetration

Page 123: First Paragraph of Section 11

Remember that g1o was obtained from equation 3.100 and depends on the imaginary
part of the polarizability per unit volume. Therefore

l = 0, = 1 + '.

Furthermore the Fourier coefficients are not necessarily real, but they must satisfy the con-

dition that inverting the indices H does not change the value of 4 H (see equation 3.94):
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ei2TBH r X ei 2 rBIy*r = ei2 rBH*r

or

AH j=H-

Therefore

OH AH = AHOH = 1H1'

Page 123: Power Ratio in the Laue Case; Derivation of Equation 3.142

With zero absorption equation 3.133 becomes

IH = sin 2 (av)

Iq +z 21

We convert JOHi to KI1HI, where K is the polarization factor (1 or cos 20). With q =
b1IH 12K 2 and v = q +z 2 we have

b2 1OH12 K2 sin2 (aVlJHIK 1 +bip2K2)

'0 K2bIIH12(1 + bll2K2)

which from the relation PH/PO (1/lbl)(IH/Io) becomes equation 3.142, in which (defini-
tions 3.140 and 3.141)

aZ./IipI 2 _[(1- b)o + bl
A = aQI H K, Y = = .- 

From the form of equation 3.142 the variable y is dimensionless. It is related to a
through the definition 3.141. However do not confuse this a with the a (polarizability)
as defined in equation 3.93! The dimensionless variable y has a particular advantage over
the other variables (0, , sl) in that it makes the calculations "coordinate independent."
Once the results are obtained for y, they can be easily rewritten for other variables.

Page 124

In the Bragg case it is necessary to check whether \/qTY! is positive or negative,
because' b < 0. The separate solutions are derived in equations 3.143 and 3.144. Note the
remark directly under equation 3.144.

A particular elegance of the use of the y scale is that it makes the diffraction patterns
symmetrical (since changing y to -y does not change the form of equations 3.142 through
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3.144. On the other hand the center of the diffraction pattern, y = 0, does not necessarily
corresond to B but to 00 or X0 as defined below. With reference to equation 3.123

1-b + a = c
2 2

or

(1 - b)o = -bcx.

From equation 3.116 we have

(1- b)o = -bc = 2 b(0 - OB) sin 2 OB*

Therefore + (1 - b) o
2 b sin 2OB 

Similarly from equation 3.118 we have

(1- b)o 

or

W0 = XB - XB( 1- b)4bSin 2 OB

Obviously 0 = B and X0 = XB only when b = +1. The center of diffraction pattern
corresponds to the Bragg angle only in the symmetrical Laue case. This is not true
for any other geometry.

Page 124: Last Two Sentences

See equations 3.95, 3.100, and 3.101. Remember that 4{ is zero (no absorption), so
that 0 is completely real.

0 0 = CO + i o

Derivation of Equation 3.146a

From equation 3.131

Ie = I X2C1 XC2 2

Io X2 - X1 1 X2 -X1 X2 - X1 )

-4b - XB sin 2 OB
XB
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Previously we had

'H b2 IiH-12 sin 2 av
-e Iq+ 2 1

Here the denominator is obtained the same way as before

IX2 X1 i2 41q +z2 1

The numerator is

1x2 c - C21=2 2- X1X2 (ClC + C2c1 )

= X2 + X2- Xx 2 [e2-1) + (2)

This factorization is possible because x = x* with no absorption. Note that the p0's are
real; if they were imaginary or complex the above step would have to be done more care-
fully! Thus

Ix2 c - 1c212 = +2 -X1X2 COS 6P2 -1)td

where

(P2 - IP) t = 2rk 0 t(6 - 60) = 2a(65- 60)

in which a was defined in equation 3.134. With

511 - o1 = /q- - =

we get for the numerator

numerator = x2 + X2+ 2 1 X2 - 2X1X2 - 2 1 X2 COS 2av

= 1x1 -X2 12 + 2xjx 2 (1 -cos 2av)

= Ix1 +x 2 12 - 4b 1VH sin2 au.

Observing the expressions above for e and I/IIO, we have

le = 1 IH-
Ioe b 

or

Pe = e - PH
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or

Pe -

P0 = Pe + PH.

Page 125: Bottom Paragraph

See equations 3.116 and 3.118.

Equations 3.147 through 3.149

In the four relations 3.147 the ratio PHIPO should first be expressed in terms of the
variable with respect to which the integral is calculated. For the variable y this quantity is
already worked out as equations 3.142 through 3.144. It is therefore necessary to trans-
form the integrals for the other three variables. To avoid the difficulty of the precise defi-
nition of domain of integration, we conveniently extend the limits to (-oo, +00). Then the
integration can be performed by multiplying each integrand by the partial derivative of the
variable considered with respect to y: For example, dO = (o/ay)dy, etc., where a/ay is
then a constant and comes out of the integral sign (the relationship between all these vari-
ables is linear). In this fashion equation 3.148 leads to 3.149. Once again we see that
only RY is essential for any calculation.

Page 126: Diffraction in Thick Crystals

The power ratio 3.142 in the Laue case shows an oscillating nature that becomes more
and more pronounced with increasing A. An uncertainty in the thickness equal to 10-3 cm
or in A equal to 7r/2 justifies the substitution of the sin2 term by its average value 1/2.
We arrive at this uncertainty through the following estimate. We have from equation 3.140

A = 7TkoKI4H I
-fY0'YH

or

AA = 7rkoKIAH 

For AA r/2

2T At ok0H1 1- 

Since

47re 2 FH
VPH = mCwV
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with

e = 4.8 X 10-10 esu,

ko = 1019,

FH = 10 or 20,

V (3 X)3 30 X 10-24 cm3 ,

m = 9.1 X 10-27 g,

this gives

Ato 10-3 cm.

Equation 3.151

The half-width value is determined easily on and X scales by the same method as
equation 3.149.

Equations 3.152

The evaluation of RY = r/2 and other R values as in equations 3.152 are the easiest
for the Laue case with no absorption. These again are straightforward and will not be ex-
plained here.

Equation 3.153

The average polarization factor is the value customarily used in a simple diffraction
experiment. However it should not be assumed that this value holds for various geomet-
rical arrangements, as encountered for example in the double-crystal spectrometer.

Equation 3.154

In Equation 3.144, 1 - 2 is physically meaningful when IyI < 1. Hence, as A in-
creases, the ratio PHIPO approaches unity, because both the numerator and the denomina-
tor contain sinh2 A y. For very thick crystals it follows

pH = 1 when l I < 1 and A >> 1.
PO

We had previously (last paragraph on page 122)

PH = IH
PO JI Ie

52
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or

e = IbI = |-I = - 70 with
0 H YH

53 
c-

rlr

~r
c=

b < 0

or

IHYH + ojI = 0,

which shows that the (algebraic) sum of inward and outward flux equals zero (total reflec-
tion). This holds for the range I I < 1.

Derivation of Equation 3.155

Equation 3.155 is the result of evaluating the average PHIPO for thick crystals when
IYI > 1. We begin with the expression for PHIPO given by equation 3.143:

sin 2 AVN i1

y2 1 +sin2 AVEC

This can be rewritten

sin2 Ay 2 1
y2 -I+sin 2 Ay 2 -1

y2- 1 + (sin2 AVl) - (y2 - 1)

y2 -1+sin 2 Ay 2 -1

= 1 -
yy2 1

y 2 _ 1 + sin 2 A\y-2 

For large A therefore we need to average the second part only. We are interested in
an integral of the form

JA1+8A

AJA1

y2 - 1

~2 l i 2 A V 5 T W idA ,y2 _1+si2

where 5A is chosen such that the integral goes between maximum and minimum. Without
setting the limits of integration and specifying the value of 5A more exactly, we evaluate
the indefinite integral. We let

y2 - 1 = 2, x > 0.

Thus

PH
Po
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1 r (y2 )dA y2 _1r
y2-1+~sin2 A 1 2A f AAx

1 y 2 1 f d(Ax)
x A J x2 + sin2 Ax

y2 - dz
x8A f x2 + sin2 Z

From a table of integrals

C dx signa a
Ja~sI n~x = arctan tan bx

a + b sin x (a+b)a a /

or

fx 2 +d~n~z - arctan ( tan z)

The limits of integration were set at Al and A + A. After multiplication by x and re-
defining the variable, the limits are Ajx and (A + A)x. Hence

I dz = 1 farctan Ft ++1 n1X
X2 + sin2 z (X 2 + 2)x2 t

-arctan 2+1 tan AX)]}.

Since the value of Al is uncertain by an appreciable amount (7r/2), we choose Ajx in
such a way that tan Ajx = 0. The value of the second of the two terms in the braces is
then 0. For the first term in the braces we should evaluate tan (Al + bA1 )x. Since tan
Ajx = 0, tan (Al + A1 )x = tan (6Alx). The value of this quantity depends (for each x
in the problem) on the value A 1 . We choose the smallest value in terms of x that makes
the quantity tan (Alx) a maximum (we do not care for other values of A 1 ). So we
must have Alx = r/2 or A1 = r/2x. This is the value of A1 that gives the average of
the integral, which should be evaluated between the limits A1 and A + A 1 . Reinserting
the multiplier (y2 - l)/x5A that was in front of the integral, we get

y2 - 1 r/2 1 y2 -1 y 2 -1 y2 - 1 1
x 7r/2x x2 (x2 +j) /(x 2+1)X2 (y 2 -1)y2 v = y2

The complete expression for equation 3.155 is now
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1 J PH dA = 1 - mTY
5A P0o-

The relationship A 1 = ir/2x implies that for small x, that is, y t 1, A 1 can be many
times r/2. However as x, and therefore y, increases, up to x = 1, the value of A 1 ap-
proaches ir/2. For very large x or y, sensitivity in A decreases to a fraction of r. It is
therefore important to indicate the range of applicability of these results. Conclusions
drawn from equation 3.148 are left up to the reader.

Top of Page 129

To evaluate RH, we integrate

00

H dy =
tC Po

1 X + h dy

10 Po

= - 1 + 2 + 2 - 1 = T.

Other expressions in equations 3.156 follow the same way as
that

for equations 3.152. Note

RY (Bragg) = 2RY (Laue).

The reader may be able to give a simple plausibility argument for this.

Page 129, Thin Crystals

For the very thin crystal, with A very small, one of two things may occur. In the
equation

sin2 A ly-7
PH
Po

either y is small, in which case the numerator is much smaller than the unity and the ratio
PH/PO is negligible, or y is large, in which case y2 + 1 t y2 and equation 3.157 follows.
The same reasoning applies to equations 3.143 and 3.144.

Comments Following Equation 3.159

The comments following equation 3.159 should be read in the light of our redefinition
of half-width according our note pertaining to the middle of page 101. When D is small
(so that the entire crystal plate contributes to diffraction), we may see that the definition
D = to (sin OB)IHI is physically reasonable (Fig. 11).

PH dy +
f 0.0 Po
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to

(a ) ( b)

Fig. 11-Diffraction geometries for thin crystals: (a) Bragg case: D = to and (b) Laue case:
D = to tan OB

Equation 3.160

It may be seen that the total reflecting power for a "thin" crystal is a linear function
of A, whereas for the thick-crystal there is no A dependence.

Equation 3.161

We write

A = °to °v IIHI = abJK 1HI,
'Yo

K = 1 or cos 20,

P1H - 4ire2 FI
m 0V

and

' = 47re 2 FHX2 I ag 1 2

~P -m(27rc)
2 V 'IH 2

1 ___ 2_____
112 m 22 V 2 FH12.

Therefore, from the last of equations 3.160,

X _7rAlIPHKX
vHil 2 in20B

lrkotoV|bTK 2 I PH 12X

/I Tj 2(sin2 0 B )YO

which becomes after taking the mean for normal and parallel polarization

2to 1 + cos2 20B\ IFH12X4 e2 \2

RH- \ / 2(sin2 OB)X2 mc2V)

- - w
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to=a-

70 

In taking the mean we have written

14) = 1 0)
( + K) - (1 + cos 2 2OB)

Page 131: Top of Page

The paragraph portion at the top of page 131 contains some very important remarks
regarding kinematical and dynamical theories.

Page 131: Crystals of Intermediate Thickness

Setting y = 0 in the Laue expression (sin2 A 1 + y2 )/(1 + y2 ) (for the center of the
diffraction pattern), we see that the value of sin2 A increases to 1 as A 7r/2. Thereafter,

it oscillates between 0 and 1. Away from the center, that is, for y * 0, the Laue expres-
sion is an oscillating function of A. for every y in the problem, the higher values of A

lead to faster and faster oscillations; that is, the interference fringes squeeze together with

increasing A.

Equation 3.162 Through 3.166

It is easier to develop a manageable expression for the total integrated intensity than

for the power ratio. A familiar mathematical tool is used here: To evaluate a function
f(x) it may be convenient to first differentiate the function, expand the derivative in a

Taylor or some other infinite series, and then reintegrate. A variation of this trick is used
in deriving equation 3.165: Since we observe from equation 3.163 the similarity with the

Bessel integral, differentiate equation. 3.163, express the result in the Bessel function

Jo(p), and again integrate.

Equation 3.166 verifies the previous results that for the Laue (as well as the Bragg)

case, small A implies RY = 7rA, and for the Laue case alone, with very large A, RY4

ir/2.

Page 133: Bragg Case

For the range y < 1 see equation 3.154. Again, working out the integral 3.167 for
RY we find the numerical estimates for large and small A in agreement with previously
derived equations.
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Equation 3.169

The definition 3.169 is the same as the definition 3.140. A "strong" reflection means
relatively large FH or AH. Substituting appropriate numbers for FH (calcite etc.), we get
A = 1.7 X 103 Kto/I/y% , whereas for smaller FH we would find smaller A. The as-
sumption that

A = 17 X 103 Kt° < 0.4

implies

° <0-4 1X 3 4 0.2 X 10-3 = 2 X 10- 4 .

Thus the "effective linear dimension" increases with decreasing A. The relationship 3.169
controls the range of applicability of the thin crystal formula for strong and weak reflec-
tions.

Equations 3.170

By O j we mean AH with "minus H, " that is, with reversed Miller indices.

Equation 3.172

See equation 3.98.

Equation 3.147

In equation 3.174 the factor O4/2 is the same as 0 as shown by equations 3.90,
3.106, and 3.108. Also note the misprint: the bracket in the exponent should be dotted
into r.

Equations 3.177

Both Fourier components of ' and " are in general complex. We had previously
set the quantities I H 12, I O 12, and I H Oq I equal to each other. Here however we must
resolve them into real and imaginary parts. For example

H AH= 1 + iH1 2 = (H + i)( - i

H I + IH I2 - i AH A + H

Now
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iv H pt*+ (SA ) = 2 Re (io'*).

We have

QH Hr +iHi

and

Re (HAH*) = Re [i(14 1 i4p.)(w 1 + W1 .)]or i r Hi

4 i'H r - H i P r

Finally

Fi al2 = 1TH12 + 1 112 + 2[ 'ill r - 'H r'PHi

Equations 3.179 and 3.180

The assumption of equality of the three expressions 3.177 is purely a matter of con-
venience. However it is clear also that for crystals without centrosymmetry the calculation
would become quite involved. From now on we assume that the Fourier components AH
and AH are real, and for each set of Miller indices we set

K - A,,

where in general it is much less than AH (due to the small anomalous part of polariza-
bility). Equations 3.180 follow from equations 3.177:

PHI = 12-12 14<,A2

Equations 3.181

The definitions 3.181 follow the same pattern as equation 3.141. One difference is
in the factor 0, which is now explicitly written out as

4'0 = '00 + i44.

The factor IHI in the denominator is now rewritten as 144i. The expression for y in
equation 3.141 is now replaced by two expressions: y as before and g (absorption term).

Equation 3.182

To obtain q +z 2 (equation 3.182), we substitute q and z2 from equation 3.123.
Equations 3.180 should be used in evaluating q, and equations 3.181 should be used in
evaluating z 2 .

59 ret
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Derivation of Equation 3.183

Within equation 3.182

1 + 2iK + 2 = (+Y ( 1+ y2) (+Y2 1 + y2)

Therefore the real part is 1 + y 2, and the imaginary part is iK/YFYY. This in equa-
tion 3.182 gives, using the third definition 3.181,

av = aKl IVrlbTRe[V +y (+ ) A y2

and

KA
aw =

Also, ignoring K, we have

Iq+z 21 = V2 +W21 K 2 I i 2 (1+y 2 ).

Comments Following Equation 3.184

IV4'I is the factor appearing in A; AH and 4' appear in the absorption term. If o
<< , then

P0o << A.
0o

Equation 3.185 is the approximation for large A, and equation 3.186 is that for small
A(<0.4). Equation 3.186 is readily integrated whereas one must resort to more elaborate
numerical techniques in calculating RY for larger KA.

Derivation of Equation 3.188

We first write by definition

2KA = 2 =aKl j= 2 1;| I" °Tkoto K

= 2rko,,o IHI - ioto 1 - poto= 27rk o 10t0t = 7 x;'1 

WiW.h this definition equation 3.185 becomes
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21 )eIotO/l')O(1 + 2 sinh2 __ ____ 1 e-1oto/o[l-(/N ]
(1+y) s1 +y2 4(1 +y 2 )

To see this, we write

c=

61

-1

ra-

3-

rr
rz:

KA __ ___ _____e_+_
sinh2 sinh2 x = (ex 4e-x)2 2x +e 2x -1

,r +y 2 = ih2 4

If we set x = 3, then e2 x = e6 - 400 and e-2x = 0.0025 and can be neglected; hence we

have

sinh2 t 1 e2KA/'- +y 2 4
for x > 3,

to one part in 400. Thus equation 3.188 follows.

Page 140: Top Two Lines

To evaluate the half-width wy, we proceed as previously, by setting the maximum
value of equation 3.188 equal to twice the value at coy = y:

1 e-(PotoI')o)[1-(6N1+y 2)] = 1 1 -(potolyo)(1-E)
4(1+y 2 ) 2 4

Taking logarithms of both sides, we obtain

- log (1 + y 2) + log 2 + P0 -

This equation, after simplification, is seen to be satisfied for y between 0 and 1. In fact

when 2KA = otof-yo is very large, the equation holds for y very near zero. It is then
reasonable to assume that

log (1 + y 2 ) t y2 + (_ y)

by expansion around y = 0. Then we have

2KA
y2 + log2 + , 2 2KA.

lot = Poto + E.oto 
o o 7o

We now expand

1 1 1

V:+:y2 . + 1 y2
2
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Hence

_ y2 + log 2 + 2KA (1 -

or

y2 (1 +KA) = +log2

or

y2 = log 2
KA +1 -

Thus

W log 2
JIKIA + 

The next statement that "as KIA decreases to zero, wY increases to 1," obviously
does not come from the expression just derived, because the latter refers only to an ap-
proximation for large KA. It may be seen from equation 3.186 that the half-width at
iKJA = 0 is equal to 1.

Page 140: Bragg Case

The Bragg case is again more difficult than the Laue case. For very thick crystals we
may set sinh aw cosh aw so that equation 3.139 reduces to equation 3.189. (Note that
sin av then oscillates between -1 and +1 and may be ignored.)

Derivation of Equation 3.190

From equation 3.182 we get

Iq+Z21 = K2 k10H2 1bl I-(2iK+1) + y2 + 2igy - g21,

where the minus sign is used for b in the Bragg case. From equations 3.123 and 3.180

q2 = b 2 I4'H'/'i1 2 = b2 1qIH12 K 2 11 + 2iKI

= b2 1 142 K 2 (1 + 4K 2 ).

Substituting this in equation 3.189 namely,

1 IH = PH =
b lo Pe

b1I H12 K2

Iq +z21 + Iz21 + v\(Iq +z21 + Iz2 )2 - Iq12 '

2 )
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we get

PH -
pe

0o

1

63 2
<-

-l
:

rr
c=L + -L2_ (1 +4K2 )

where we have set

Iq +z21 + Z21 = L
K2Ii 2 Ibl -

which is the same as the definition for L given by equation 3.190a, because

q+z21 = K2 10'12 1bl (-1+y 2 -g 2)2 + 4(yg-K) 2

Z2 = 2 + g2 .

Then

L - L2 - (1-4K 2)
L2 - (L2 - 1 - 4K2)

L - VL 2 _ (1 + 4K )

1 + 4K2.

Here we multiplied both the numerator and the denominator by L - -L2_ (1 + 4K2).

Since 4K 2 << 1, we ignore it in the denominator and obtain equation 3.19O.

Page 141: The Darwin Solution

The assumptions of the Darwin solution are stated in the subsection beginning on page
141. Here M -L if g = 0 and K = 0, or from equation 3.190a

M = -y2 -lj + y2 .

Equations 3.192 and 3.193

When IyI < 1, equation 3.192a is obvious, because M = 1. When lyI >1, we write

M = 2y2 - 1, so that from equation 3.191 the expression for PHIPO is

2y2 - 1 - N(2y 2 - 1)2 - 1 = 2y2 - 1 - 4y-4y 2

= 2y2 - 1 - 21y y l2 -1

= (IJI - y-2 1)2 .

In evaluating the integral RY, the expression just derived is integrated in the two regions
-oo <y -1 and +1 < y < +oo, whereas for IyI < 1 the value RY is clearly = 2.

PH 
Po
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Furthermore since in equation 3.192b the expression for PHIPO is an even function of
y (changing y to -y does not change the value of the function), it is necessary to evaluate
only

2 ( - /2-) 2 dy.
+1

Page 141: Last Paragraph

The lack of symmetry is apparent by changing y to -y.

Equation 3.194

Equation 3.194 can be shown immediately by solving for the root of aL/ay = 0. On
the glancing angle scale we have (- ai 1 + ) K

= KIW I g

with a as given in our note pertaining to page 124. Therefore (see equation 3.145a)

= o + 22 + ) - g TH TK
I bI sin 2 0 B

The quantity IbI is written as an absolute value to make equation 3.194 more universal.
Note that in the Bragg case

1-b 1+IbI
*2 2

Equations 3.194 and 3.145a are similar except for the K term. The effect of this
term depends on the sign of K. Ordinarily this term would tend to bring the peak of dif-
fraction back to the Bragg position. However the shape would still be unsymmetric unless
K = 0.

Top of Page 143

From equation 3.190 we evaluate the intensity maximum (PH/Po)max at y = Kg:
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K2 K2

L 1 + _ ( 2 + - + g2

- ~ +g -K22 + K2 +g

+ 2 2 K2 +g

= 1 + 2g2.

In the transition from the second to the third equality we used the fact that K < g always.
So

-H = L - -L2 _ (1- 4K2 ) = 1 + 2g2 - 2 g 2 (g2 + 1 - K2 ).
Po

The crude approximation RY (8/3)(1 - 21gl) is based on the following: When g =

0, RY = 8/3, so that for very small g one might be able to write for PHIPO the expression
just derived:

pH = 1 + 2g2 - 2g12 1+g2 K2

Po

t 1 + 2g2 - 21gi[1 + (g2 K2)]

1 - 21gl

or

RY -- (1 -21gl).

Pages 144 to 147: Diffraction Pattern for Calcite

The diffraction pattern calculation is quite tedious but straightforward. It is suggested
that the reader become familiar with structure factor calculation techniques, the simplest
of which can be found in Cullity [6] and Azaroff [1]. Otherwise Zachariasen's three-page
explanation of results is adequate.

Page 147: Double Crystal Diffraction Patterns

In this final section of Chapter III the experimental method of verification of pervious
theory is described. Again we find the explanation quite lucid and leave the derivation
entirely as an additional exercise for the reader.
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